

HyperLoom

User guide

	Introduction
	Architecture

	Basic terms

	Installation
	Runtime

	Python client

	Python client
	Basic usage

	Running external programs

	Python functions in plans

	Task redirection

	Task context

	Direct arguments

	Python objects

	Reports

	Labels

	Resource requests

	Dynamic slice & get

	Own tasks

	Extending worker
	New tasks

	New data objects

API

	API: Python Client
	Client

	Future

	Tasks

Introduction

HyperLoom is a platform for defining and executing workflow pipelines in a
distributed environment. HyperLoom aims to be a highly scalable framework
that is able to efficiently execute millions of interconnected tasks on hundreds of computational nodes.

User defines and submits a plan - a computational graph (Directed Acyclic Graph) that captures dependencies between computational tasks. The HyperLoom infrastructure then automatically schedules the tasks on available nodes while managing all necessary data transfers.

Architecture

HyperLoom architecture is depicted in Fig. 1. HyperLoom consist of a server process that manages worker processes running on computational nodes and a client component that provides an user interface to HyperLoom.

The main components are:

	client – The Python gateway to HyperLoom – it allows users to programmatically chain computational tasks into a plan and submit the plan to the server. It also provides a functionality to gather results of the submitted tasks after the computation finishes.

	server – receives and decomposes a HyperLoom plan and reactively schedules tasks to run on available computational resources provided by workers.

	worker – executes and runs tasks as scheduled by the server and inform the server about the task states. HyperLoom provides options to extend worker functionality by defining custom task or data types. (Server and worker are written in C++.)

[image: Architecture scheme]
Fig. 1 Architecture of HyperLoom

Basic terms

The basic elements of Loom’s programming model are: data object, task,
and plan. A data object is an arbitrary data structure that can be
serialized/deserialized. A task represents a computational unit that produces data
objects. A plan is a set of interconnected tasks.

Tasks

A task is an object representing a computation together with its
dependencies and a configuration. Each task has the following attributes:

	Task inputs – task’s prerequisites (some other tasks)

	Task type – the specification of the procedure that should be executed

	Task policy – defines how should be the task scheduled

	Configuration – a sequence of bytes that is interpreted according the task type

	Resource constraints

By task execution, we mean executing a procedure according to task type,
which takes data objects and configuration, and returns a new data object. The
input data objects are obtained as a result of executing tasks defined in task
inputs. Resource constraints serve to express that a task execution may need
some specific hardware or number of processes.

Plan

Plan is a set of tasks. Plan has to form a finite asyclic directed
multigraph where nodes are tasks and arcs express input dependencies between
tasks. Plan execution is an execution of tasks according to the dependencies
defined in the graph.

Note

	We have formally restricted each task to return only a single data object as
its result. However, a task can produce more results by returning an array of
data objects.

	Input data objects are always results of a previous tasks. To create a
specific constant data object, there is a standard task (tasks.const in
Python API) that takes no input and only creates a data object from its
configuration.

Symbols

Customization and extendability are important concepts of HyperLoom. HyperLoom is designed
to enable creating customized workers that providies new task types, data
objects and resources. HyperLoom uses the concept of name spaces to avoid potential
name clashes between different workers. Each type of data object, task type and
resource type is identified by a symbol. Symbols are hierarchically organized
and the slash character / is used as the separator of each level (e.g.
loom/data/const). All built-in task types, data object types, and resource
types always start with loom/ prefix. Other objects introduced in a a
specialized worker should introduce its own prefix.

Data objects

Data objects are fundamental entities in HyperLoom. They represent values that serves
as arguments and results of tasks. There are the following build-in basic types
of data objects:

	Plain object – An anonymous sequence of bytes without any additional
interpretation by HyperLoom.

	File – A handler to an external file on shared file system. From the
user’s perspective, it behaves like a plain object; except when a data
transfer between nodes occurs, only a path to the file is transferred.

	Array – A sequence of arbitrary data objects

	Index – A logical view over a D-Object data object with a list of positions.
It is used to slice data according some positions (e.g. positions of the
new-line character to extract lines). It behaves like an array without
explicit storing of each entry.

	PyObj – Contains an arbitrary Python object

We call objects that are able to provide a content as continous
chunk of memory as D-Objects. Plain object and File object are D-Objects;
Array, Index, and PyObj are not D-Objects.

Each data object

	size – the number of bytes needed to store the object

	length – the number of ‘inner pieces’. Length is zero when an object has no
inner structure. Plain objects and files have always zero length; an array has length
equal to number of lements in the array.

Note

size is an approximation. For a plain object, it is the length of
data itself without any metada. The size of an array is a sum of sizes
of elements. The size of PyObj is obtained by sys.getsizeof.

Installation

HyperLoom has two components from the installation perspective:

	Runtime - the HyperLoom infrastructure (Server and Worker)

	Python client

Both components resides in the same Git repository,
but their installations are independent.

The main repository is: https://code.it4i.cz/ADAS/loom

Runtime

The HyperLoom infrastructural components depend on the following libraries that are not included in the HyperLoom
source code:

	libuv – Asychronous event notification

	Protocol buffers – Serialization library

	Python >=3.4 (optional)

	Clouldpickle (optional)

(HyperLoom also depends on spdlog and Catch that are distributed together
with HyperLoom)

In Debian based distributions, dependencies can be installed by the
following commands:

apt install libuv-dev libprotobuf-dev
pip install cloudpickle

Note

If you are going to create plans with many tasks, you can obtain a
significant speedup by using PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=”cpp”
feature.

When dependencies are installed, HyperLoom itself can be installed by the following
commands:

cd loom
mkdir _build
cd _build
cmake ..
make
make install

Python client

Python client depends on:

	Protocol buffers

	Cloudpickle

Python client can be installed by the following commands:

cd loom/python
sh generate.sh
python setup.py install

Python client

Basic usage

The following code contains a simple example of HyperLoom usage. It creates two
constants and a task that merge them. Next, it creates a client and connect to
the server and submits the plan and waits for the results. It assumes that the
server is running at address localhost on TCP port 9010.

from loom.client import Client, tasks

task1 = tasks.const("Hello ") # Create a plain object
task2 = tasks.const("world!") # Create a plain object
task3 = tasks.merge((task1, task2)) # Merge two data objects together

client = Client("localhost", 9010) # Create a client
result = client.submit_one(task3) # Submit task
print(result.gather()) # prints b"Hello world!"

The full list of build-in tasks can be found in Tasks.
Method submit_one is non-blocking and returns instance of
loom.client.Future that represents a remote computation in HyperLoom
infrastructure. There are basic four operations that is provided by
loom.client.Future:

	wait() - The operation blocks the client until the task is not finished.

	fetch() - The operation waits until the task is not finished, then it
downloads the content to the client (while the results also remains on
workers).

	release() - It removes results from workers. This method is automatically
called in __del__ method of the object, hence you do not have to called it
manually. However, it is a good practice to explicitly call the method to
release resources as soon as possible and do not depend on garbage collecting
in the client.

	gather() - Basically, it is a short cut for fetch() + release().
It downloads data to the client and removes them from the workers. For a
single future it is actually the same as calling fetch() followed by
release() but when we work with more futures it allows some optimizations.

Submitting more tasks at once

All previously mentioned methods have alternatives for working with
more tasks/futures at once:

from loom.client import Client, tasks

task1 = tasks.const("Hello ") # Create a plain object
task2 = tasks.const(" ") # Create a plain object
task3 = tasks.const("world!") # Merge two data objects together

client = Client("localhost", 9010) # Create a client
results = client.submit((task1, task2, task3)) # Submit tasks; returns list of futures
print(client.gather(results)) # prints [b"Hello world!", b" ", b"world!"]

In this case, we have replaced submit_one by method submit that takes a
collection of tasks and we have called the method gather not on the future
but directly on the client. Client also have methods wait, relase, and fetch
for collective future processing.

When possible, it is recommdended to use collective processing futures, since it
allows some optimizations in comparison of processing tasks/futures in a loop
separately.

Reusing futures as tasks inputs

Futures can be also used as input for tasks. This allows to use a gradual submitting,
i.e. HyperLoom may already computes some part of the computation while the remaining plan
is still composed.

task1 = ... # create a task
f1 = client.submit_one(task1) # submit task

task2 = ... # create a second task
taskA = tasks.merge((f1, tasks2)) # create task that uses f1 and taskA
fA = client.submit_one(f1)

It does not matter if task1 is finished yet or not, as far it is not released it can be used as an input. In other words, you can call wait and fetch on futures and they can be still used in tasks; however release or gather releas tasks from the workers and it cannot be used anymore.

Important

The following code is usually a bad pattern:

task1 = ...
task2 = tasks.run("program1", stdin=task1)
f2 = client.submit_one(task2)
task3 = tasks.run("program1", stdin=task1)
f3 = client.submit_one(task3)
client.gather((f2, f3))

Task task1 is computed twice! Task task1 is requested in both submissions
but we did not indicate that we want to reuse its result later.

The better code:

task1 = ...
f1 = client.submit_one(task1)
task2 = tasks.run("program1", stdin=f1)
f2 = client.submit_one(task2)
task3 = tasks.run("program1", stdin=f1)
f3 = client.submit_one(task3)
client.gather((f2, f3))

or (without gradual submmiting):

task1 = ...
task2 = tasks.run("program1", stdin=task1)
task3 = tasks.run("program1", stdin=task1)
f2, f3 = client.submit((task2, task3))
client.gather((f2, f3))

In both cases, task1 is computed only once.

Running external programs

In this subsection, we demonstrate a running of external programs. The most
basic scenario is execution of a program while mapping a data object on standard
input and capturing the standard output. It can be achieved by the following
code:

task1 = ...
task_run = tasks.run("/bin/grep Loom", stdin=task1)

If the task_run is executed, the standard unix program grep is executed.
Result from task is mapped on its standard input and output is captured.
Therefore, this example creates a new plain data object that contains only lines
containing string Loom.

If the first argument is string, as in the above example, then Loom expects that
arguments are separated by white spaces. But argument may be provided
explicitly, e.g.

task_run = tasks.run(("/path/to/program", "--arg1", "argument with spaces"))

Mapping input files

If the executed program cannot read data from the standard input or we need to
provide more inputs, run allows to map data objects to files.

The following code maps the result of task_a to file1 and result of
task_b to file2.

task_a = ...
task_b = ...
task_run = tasks.run("/bin/cat file1 file2",
 [(task_a, "file1"), (task_b, "file2")])

A new fresh directory is created for each execution of the program and the
current working directory is set to this directory. Files created by mapping
data objects are placed to this directory. Therefore, as far as only relative
paths are used, no file conflict occurs. Therefore the following code is
correct, even all three tasks may be executed on the same node
simultaneously.

task_a = ...
task_b = ...
task_c = ...

task_1 = tasks.run("/bin/cat file1", [(task_a, "file1")])
task_2 = tasks.run("/bin/cat file1", [(task_b, "file1")])
task_3 = tasks.run("/bin/cat file1", [(task_c, "file1")])

Mapping output files

So far, the result of run tasks is created by gathering the standard output.
There is also an option to create a result from files created by the program
execution.

Let us assume that program /path/program1 creates outputs.txt as the output,
then we can run the following program and capturing the file at the end
(standard output of the program is ignored).

task = tasks.run("/path/program1", outputs=("output.txt",))

The user may define more files as the output. Let us consider the following
code, that assumes that program2 creates two files.

task = tasks.run("/path/program2", outputs=("output1.txt", "output2.txt"))

The result of this task is an array with two elements. This array contains with
two plain data objects.

If None is used instead of a name of a file, than the standard output is
captured. Therefore, the following task creates a three element array:

task = tasks.run("/path/program3",
 outputs=("output1.txt", # 1st element of array is got from 'output1.txt'
 None, # 2nd element of array is stdout
 "output2.txt")) # 3rd element of array is got from 'output2.txt'

Variables

In previous examples, we have always used a constant arguments for programs;
however, programs arguments can be also parametrized by data objects. When an
input data object is mapped to a file name that starts with character $ then
no file is mapped, but the variable with the same name can be used in
arguments. HyperLoom expands the variable before the execution of the task.

The following example executes program ls where the first argument is
obtained from data object.

path = tasks.const("/some/path")
task = tasks.run("/bin/ls $PATH", [(path, "$PATH")])

Note

See Task redirection for a more powerfull dynamic configuration of
run.

Error handling

When an executed program exits with a non-zero exit code then the server reports
an error that is propagated as TaskFailed exception in the client.

task = tasks.run("ls /non-existent-path")
try:
 result = client.submit_one(task)
 result.wait()
except TaskFailed as e:
 print("Error: " + str(e))

This program prints the following:

Error: Task id=2 failed: Program terminated with status 2
Stderr:
ls: cannot access '/non-existing-dictionary': No such file or directory

Python functions in plans

HyperLoom allows to execute directly python functions as tasks. The easiest way is to
use decorator py_task(). This is demonstrated by the following code:

from loom.client import tasks

@tasks.py_task()
def hello(a):
 return b"Hello " + a.read()

task1 = tasks.cont("world")
task2 = hello(task1)

result = client.submit_one(task2)
result.gather() # returns b"Hello world"

The hello function is seralized and sent to the server. The server executes
the function on a worker that has necessary data.

	When str or bytes is returned from the function then a new plain
data object is created.

	When loom.client.Task is returned then the the task redirection is
used (see Task redirection).

	When something else is returned or exeption is thrown then the task fails.

	Input arguments are wrapped by objects that provide the following methods

	read() - returns the content of the object as bytes, if data
object is not D-Object than empty bytes are returned.

	size() - returns the size of the data object

	length() - returns the length of the data object

	tasks.py_task has optional label parameter to set a label of the
task if it is not used, then the name of the function is used. See XXX for
more information about labels

Decorator py_task() actually uses loom.client.tasks.py_call(),
hence the code above can be written also as:

from loom.client import tasks

def hello(a):
 return b"Hello " + a.read()

task1 = tasks.cont("world")
task2 = tasks.py_call(tasks.py_value(hello), (task1,))
task2.label = "hello"

client.submit_one(task2) # returns b"Hello world"

Task redirection

Python tasks (used via decorator py_task or directoly via py_call) may
return loom.client.Task to achive a task redirection. It is useful for
simple dynamic configuration of the plan.

Let us assume that we want to run tasks.run, but configure it dynamically on
the actual data. The following function takes two arguments, checks the size and
then executes tasks.run with the bigger one:

from loom.client import tasks

@tasks.py_task()
def my_run(a, b):
 if a.size() > b.size():
 data = a
 else:
 data = b
return tasks.run("/some/program", stdin=data)

Task context

Python task can configured to obtain a Context object as the first argument.
It provides interface for interacting with the HyperLoom worker.
The following example demonstrates logging through context object:

from loom.client import tasks

@tasks.py_task(context=True)
def hello(ctx, a):
 ctx.log_info("Hello was called")
 return b"Hello " + a.read()

The function is has the same behavior as the hello function in
Python functions in plans. But not it writes a message into the worker log.
Context has five logging methods: log_debug, log_info, log_warn,
log_error, and log_critical.

Moreover Context has attribute task_id that holds the indentification
number of the task.

Direct arguments

Direct arguments serve for the Python task configuration without necessity to
create HyperLoom tasks. From the user perspective it works in a similar way as
context – they introduces extra parameters. The values for parameters are set
when the task is called. They can be arbitrary serializable objects and they are
passed to the function when the py_task is called. Direct arguments are always
passed as the first n arguments of the function. They are specified only by a
number, i.e. how many first n arguments are direct (the rest arguments are
considered normal HyperLoom tasks).

Let us consider the following example:

from loom.client import tasks

@tasks.py_task(n_direct_args=1)
def repeat(n, a):
 return n * a.read()

c = tasks.const("ABC")
t1 = repeat(2, c)
t2 = repeat(3, c)

client.submit_one(t1).gather() # returns: b"ABCABC"
client.submit_one(t2).gather() # returns: b"ABCABCABC"

Note

When context and direct arguments are used together, then the context
is the first argument and them follows the direct arguments.

For the completeness, the following code demonstrates the usage of direct
arguments via py_call:

from loom.client import tasks

def repeat(n, a):
 return n * a.read()

c = tasks.const("ABC")
t1 = tasks.py_call(tasks.py_value(repeat), (c,), direct_args=(2,))
client.submit_one(t1).gather() # returns: b"ABCABC"

Python objects

Data objects in HyperLoom can be directly a Python objects. A constant value can be created
by tasks.py_value:

from loom.client import tasks

my_dict = tasks.py_value({"A": "B"})

It is similar to tasks.const, but it creates PyObj instead of Plain object.

PyObj can be used in py_task. It has to be unwrapped from the wrapping object first:

@py_task()
def f(a):
 d = a.unwrap()
 return "Value of 'A' is " + d["A"]

t = f(my_dict)
client.submit_one(t).gather() # returns b"Value of 'A' is B"

If we want to return a PyObj from py_task we have wrap it to avoid implicit conversion to
Data objects:

@py_task()
def example_1():
 return "Hello"

@py_task(context=True)
def example_2(ctx):
 return ctx.wrap("Hello")

@py_task(context=True)
def example_3(ctx):
 return [ctx.wrap({"A", (1,2,3)}), "Hello"]

The first example returns a plain object. The second example returns PyObj. The third one returns
HyperLoom array with PyObj and plain object.

Important

HyperLoom always assumes that all data objects are immutable.
Therefore, modyfing unwrapped objects from PyObj leads to highly
undefined behavior. It is recommended to store only immutable
objects (strings, tuples, frozensets, ...) in PyObj to prevent
problems. If you store a mutable object in PyObj, be extra
carefull to not modify it.

THIS EXAMPLE CONTAINS ERROR
@py_task()
def modify_arg(a):
 my_obj = a.unwrap()
 my_obj[0] = 321 # HERE IS ERROR, we are modyfing unwrapped object

value = tasks.py_value([1,2,3,4])
modify_arg(value)

Note

Applying wrap on Data wrapper returns the argument without wrapping.

Reports

Reporting system serves for debugging and profiling the HyperLoom programs.
Reports can be enabled by set_trace method as follows:

task = ...
client.set_trace("/path/to/mytrace")
result = client.submit_one(task)
...

The path provided to set_trace has to be placed on a network filesystem that
is visible to server and all workers. It creates a directory
/path/to/mytrace where server and workers writes its traces.

The trace can be explored by loom.lore.

$ python3 -m loom.lore /path/to/mytrace

It creates file output.html that contains the final report.
The full list of commands can be obtained by

$ python3 -m loom.rview --help

Labels

Each task may optinally define a label. It serves for debugging purpose –
it changes how is the task shown in rview. Label has no influence on the
program execution. The label is defined as follows:

task = tasks.const("Hello")
task.label = "Initial data"

rview assigns colors of graph nodes or lines in a trace according the labels.
The two labels have the same color if they have the same prefix upto the first
occurence of character :. In the following example, three colors will be
used. Tasks task1 and task2 will share the same color and task3 and
task4 will also share the same color.

task1.label = "Init"
task2.label = "Init"
task3.label = "Compute: 1"
task4.label = "Compute: 2"
task5.label = "End"

Resource requests

Resource requests serves to specify some hardware limitations or inner
paralelism of tasks. The current version supports only requests for a number of
cores. It can be express as follows:

from loom.client import tasks

t1 = tasks.run("/a/parallel/program")
t1.resource_request = tasks.cpus(4)

In this example, t1 is a task that reserves 4 cpu cores. It means that if a
worker has 8 cores, that at most two of such tasks is executed simultaneously.
Note that if a worker has 3 or less cores, than t1 is never scheduled on
such a worker.

When a task has no resource_request than scheduler assumes that the task is
a light weight one and it is executed very fast without resource demands (e.g.
picking an element from array). The scheduler is allows to schedule
simultenously more light weight tasks than cores available for the worker.

Important

Basic tasks defined module loom.tasks do not define any
resource request; except loom.tasks.run, loom.tasks.py_call,
loom.tasks.py_value, and loom.tasks.py_task by default defines
resource request for 1 cpu core.

Dynamic slice & get

HyperLoom scheduler recognizes two special tasks that dynamically modify the plan –
dynamic slice and dynamic get. They dynamically create new tasks
according the length of a data object and the current number of workers and
their resources. The goal is to obtain an optimal number of tasks to utilize the
cluster resources.

The following example:

t1 = tasks.dslice(x)
t2 = tasks.XXX(..., t1, ...)
result = tasks.array_make((t2,))

is roughly equivalent to the following code:

t1 = tasks.slice(x, 0, N1)
s1 = tasks.XXX(..., t1, ...)
t2 = tasks.slice(x, N1, N2)
s2 = tasks.XXX(..., t2, ...)
...
tk = tasks.slice(x, Nk-1, Nk)
sk = tasks.XXX(..., tk, ...)
result = tasks.array_make((s1, ..., sk))

where 0 < N1 < N2 ... Nk where Nk is the length of the data object produced by
x.

Analogously, the following code:

t1 = tasks.dget(x)
t2 = tasks.XXX(..., t2, ...)
result = tasks.make_array((t2,))

is roughly equivalent to the following code (where is N is the length of the
the data object produced by x:

t1 = tasks.get(x, 0)
s1 = tasks.XXX(..., t1, ...)
t2 = tasks.get(x, 1)
s2 = tasks.XXX(..., t2, ...)
...
tN = tasks.get(x, N)
sN = tasks.XXX(..., tk, ...)
result = tasks.array_make((s1, ..., sN))

Own tasks

Module tasks contains tasks provided by the worker distributed with HyperLoom. If
we extend a worker by our own special tasks, we also need a way how to call them
from the client.

Let us assume that we have extended the worker by task my/count as is shown in
New tasks. We can create the following code to utilize this new
task type:

from loom.client import Task, tasks

def my_count(input, character):
 task = Task()
 task.task_type = "my/count"
 task.inputs = (input,)
 task.config = character
 return task

t1 = tasks.open("/my/file")
t2 = my_count(t1)

...

result = client.submit_one(t2)
result.gather()

Extending worker

Warning

The API in the following section is not yet fully stable.
It may be changed in the near future.

HyperLoom infrastructure offers by default a set of operations for basic manipulation
with data objects and running and external programs. One of this task is also
task loom/py_call (it can be used via tasks.py_call or tasks.py_task
in Python client). This task allows to executed arbitrary Python codes and the
user may define new tasks.

The another way is to directly extend a worker itself. The primary purpose is
efficiency, since worker extensions can be written in C++. Moreover, this
approach is more powerfull than py_call, since not only tasks but also new data
objects may be introduced.

On the implementation level, HyperLoom contains a C++ library libloom that
implements the worker in an extensible way.

New tasks

Let us assume that we want to implement a task that returns a number of a
specified characters in a D-object. First, we define the code of the task itself:

 #include "libloom/threadjob.h"

 class CountJob : public loom::ThreadJob
 {
 public:
 using ThreadJob::ThreadJob;

 std::shared_ptr<loom::Data> run() {
 // Verify inputs and configuration
 if (inputs.size() != 1 || task.config.size() != 1) {
 set_error("Invalid use of the task");
 return nullptr;
 }
 char c = task.config[0]; // Get first character of config

 if (!inputs[0].has_raw_data()) {
 set_error("Input object does not contain raw data");
 return nullptr;
 }

 // Get pointer to raw data
 const char *mem = inputs[0].get_raw_data();

 // Perform the computation
 size_t size = inputs[0].get_size();
 uint64_t count = 0;
 for (size_t i = 0; i < size;i ++) {
 if (mem[i] == c) {
 count += 1;
 }
 }

 // Create result
 auto output = std::make_shared<RawData>();
 output->init_from_mem(work_dir, &count, sizeof(count));
 return std::static_pointer_cast<Data>(output);
 }
};

loom::ThreadJob serves for defining a tasks that are executed in its own
thread. The subclass has to implement run() method that is executed when the
task is fired. It should return data object or nullptr when an error occurs.

The following code defines main function for the modified worker. It is
actually the same code as for the worker distributed with HyperLoom except the
registartion of our new task. Each task has to be registered under a symbol.
Symbols for buildin tasks, data objects and resource requests starts with prefix
loom/. To avoid name clashes, it is good practice to introduce new prefix, in
our example, it is prefix my/.

#include "libloom/worker.h"
#include "libloom/log.h"
#include "libloom/config.h"

#include <memory>

using namespace loom;

int main(int argc, char **argv)
{
 /* Create a configuration and parse args */
 Config config;
 config.parse_args(argc, argv);

 /* Init libuv */
 uv_loop_t loop;
 uv_loop_init(&loop);

 /* Create worker */
 loom::Worker worker(&loop, config);
 worker.register_basic_tasks();

 /* --> Registration of our task <-- */
 worker.add_task_factory<ThreadTaskInstance<CountJob>>("my/count");

 /* Start loop */
 uv_run(&loop, UV_RUN_DEFAULT);
 uv_loop_close(&loop);
 return 0;
}

New data objects

TODO

API: Python Client

Client

Future

Tasks

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		HyperLoom

 		Introduction

 		Architecture

 		Basic terms

 		Tasks

 		Plan

 		Symbols

 		Data objects

 		Installation

 		Runtime

 		Python client

 		Python client

 		Basic usage

 		Submitting more tasks at once

 		Reusing futures as tasks inputs

 		Running external programs

 		Mapping input files

 		Mapping output files

 		Variables

 		Error handling

 		Python functions in plans

 		Task redirection

 		Task context

 		Direct arguments

 		Python objects

 		Reports

 		Labels

 		Resource requests

 		Dynamic slice & get

 		Own tasks

 		Extending worker

 		New tasks

 		New data objects

 		API: Python Client

 		Client

 		Future

 		Tasks

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/down.png

_images/arch.png
server Worker

_static/comment-close.png

